

The Economics of Broiler Production

Matthew Wilson

Technical Manager, Europe, Middle East and Africa-Cobb Europe

Iran, August 2015

50 -70 -90

- •According to FAO, In the year 2050...
- The World will need to produce 70% more food
- 90% of which will come from Technology that enables yields to be increased

Food and Agriculture Organization of the United Nations

for a world without hunger

Intensive Poultry production will play a key role in meeting these objectives!

Index

Macroeconomics – Trends in The World of Poultry

The Good News: Growth The Bad News: Challenges Importers and Exporters A World of Different Markets

Microeconomics

Business Models: Integration vs. Non-Integration Performance vs. Efficiency vs. Cost Key Costs for the Poultry Company Key Cost Factors and their drivers Relative Importance of all KPI's Value

Putting it all together

Keys for a successful Poultry Company

The World of Poultry The Good News – Increase in Demand

Significant growth is predicted in Iran

The World of Poultry The Good News – Population Growth, GDP

The World population continues to grow

6 billion in 1999, 7 Billion in 2011, 11 Billion projected for 2050

Most of the population growth will take place in developing countries (Asia and Africa)

Today China and India already represent 40% of the population Asia will account for five billion people Africa for four billion people

Developing countries have high GDP

- China, India = 7-9% GDP
- Higher buying power means increase in meat consumption

- In many countries chicken consumption Is very low (0.5-2kg/annum), potential is enormous

The World of Poultry

The Good News – Poultry is Most Efficient

- This not only means less feed usage
- It also means less waste, more environmentally friendly

The World of Poultry

The Good News – What have the breeding companies done?

- Globally approximately 60 billion broilers produced per year
- In the last ten years feed conversion has improved by 0.145 points, mean.....

Source: USDA Agricultural Projections to 2019, February 2010. Economic Research Service, USDA.

- 17.4 Million tonnes less feed now required or
- 9.57 million tonnes less wheat/corn or
- 2.66 million fewer acres required

The World of Poultry The Bad news: Challenges

The World of Poultry The Bad news: High Feed Prices

The World of Poultry The Bad news: Volatile Feed Prices

- Housing, transportation, raw materials, utilities, etc.
- Feed
 - Feed costs as a % of live costs have gone from the low 50% range to the 60 - 70% range in the past 7 years.
- Competition for hectares around the world
- Demand is going up!
 - Growing population
 - China Syndrome
 - Severe Weather conditions
 - Bio Fuel demand
- Grain prices high with increasing volatility
- The GM vs. Non-GM debate

The World of Poultry The Bad news: Soyabean

- Main price drops in vegetable oil prices which had moved well above value in bio diesel.
- Fundamentals are showing tight S&D and the need for more soya bean acres
- US plantings est. 71.8 million acres this spring, up from 63.6 million year ago
- Need also increase in Brazil and Argentina plantings
- Non GM soyabean meal supplies still tight in the spot position, however many producers finding ways of replacing with GM material

The World of Poultry The Bad news: Soyabean

Cobb

- Price differentials GM Soya vs. Non GM
 - yields, contaminations premium at US\$ 40 per ton and increasing to US\$80 per ton
- Possibly a big issue in 4-5years when availability of NON-GM material will be very limited
- EU takes minimum of 30 months to approve new GM varieties
- US, Japan, Canada, China takes 15 months

The World of Poultry The Bad news: Energy prices

Unpredictable and driven by politics and supply as well as demand

The World of Poultry

The Bad news: Supply and Demand Imbalances

- Production imbalances and Pricing
 - The circle of Death
 - In developing countries circle is stopped by producers "talking" and controlling production
 - Difficult to stop in many developed countries (EU): It is illegal for competitors to control pricing

- Political Unrest and Notifiable Diseases can create supply imbalances
 - War In Libya: NL, Spain and France had excess HE production and the prices dropped from €0.25 to €0.15-now shortages!!!
 - War in Iraq: and prices increasing

The World of Poultry

The Bad news: Supply and Demand Imbalances

Political Unrest and Notifiable Diseases can create supply imbalances

- War In Libya: NL, Spain and France had excess HE production and the prices dropped from €0.25 to €0.15-Then shortages!!!
- War in Iraq: and HE prices increasing from €0.24 to €0.38!!!!!!!!!

The World of Poultry Global Market Positioning in 2020

- China (60 bn \$, 2011) and India investing in Argentina, Brazil and Africa to ensure food supply. China imports 22% of the World's soya prod. (USDA, supply & demand report, 2011)
- Middle East is also trying but resources are limited. Become biggest importer in the World

The World of Poultry

How countries can protect their industry?

In high cost markets where there is not population growth:

- Some ban imports....others try to compete....
- E.U. promotes fresh, local food as Healthier, Safer and Environmentally better...
- Marketing: Increase market share over other meats (Pork, Beef) (per capita consumption: Germany 12kg/pa)

A World of different Markets – LIVE

Why do they still exist? Best way to ensure freshness when no electricity or cold chain. Cultural

A World of different Markets - WHOLE

The World of Poultry

A World of different Markets – Mixed Frozen vs. Fresh

The World of Poultry

A World of different Markets – Deboning and Further Processing

The World of Poultry A World of different Market - Dark Meat vs. White Meat Markets

Price per Kg from Slaughterhouse	UK	Turkey	
Deboned Breast Meat	€ 4.35	€ 2.05	
Leg Quarters	€ 1.45	€ 2.02	

Because of the import bans in Russia on US dark meat (Bush legs)-cold stores in the US are filling up with dark meatthis will create market imbalances and will eventually drive down the price of breast meat in the US

Raw material competition & Feed cost implications

Continued Commitment to Feed Efficiency

An Incredible success story! – almost 250% improvement since 1957 The bird of today converts feed better and has adapted to changing feed quality trends

© 2015 Cobb Europe - Confidential & Proprietary

Source: CVI

Raw material competition & Feed cost implications Continued Commitment to Feed Efficiency

One trait that a breeding company can not afford to stop selecting for.

 The bird of the future must be able to perform with low cost feed and accept feedstuff of lower quality (by-products)

YEAR

2.00

1.95 1.90

1.85

1.80 1.75 1.70

1.65 1.60 1.55

1981

FCR

Genetically, FCR has been declining linearly (2 points/year) Benefit in Feed Cost reduction is approx \$9m pa over past 20 years based on 1m BPW kill @ 2.2kgs ALM

Sustainability of Continual Rate of Genetic Improvement Develop New Selection Technologies

Digital X-Ray

Ultrasound

Meat Quality Testing

Blood O2 Testing

Genetic Selection Complexity Growing Role of Biotechnology

- Gene Marker Assisted Selection to make progress on difficult traits that can't be selected on phenotypic traits and increase selection accuracy
 - Genomics
- Look at the possibility of safeguarding food
 - Salmonella resistant meat ?
 - AI resistant genetic chicken lines ?
- Making poultry meat more healthy
 - Add more nutrients (calcium, omega 3 fatty acid
- Ensure Consumer Acceptance
 - Focus on positives
 - Al resistance, salmonella resistance
 - Not on biotech evils
 - GMO, cloning, transgenics

Sustainability of Continual Rate of Genetic Improvement Genomics – Applications & Cobb Research

- Increased accuracy of selection (use genotype)
 - Growth, Feed Conversion and Yield Related Genes
 - Meat Quality
 - Ascites
 - Tibial Dischondroplasya
- Select for **sex-limited traits** (male egg production)
- Select for traits of low heritability
 - Fertility
- Selection for **difficult to measure traits (disease)**:
 - Avian Influenza Resistance
 - Marek's Disease Resistance
- Predict heterosis between crosses (egg production)
- Paternity and Product/ Line identifications Traceability

Sustainability of Continual Rate of Genetic Improvement **Continued increase in selection accuracy**

2.75

2.50

2.00

1.75

ॐ 2.25

Allows continued progress in **broiler** performance. Weight continues to increase while broiler mortality decreases every

Allows continued progress in breeder performance. Eggs continue to increase while breeder mortality decreases every year

(Agri Stats Annual Reports – (1988 to 2006)

Live Wt. (Kg) — Mortality

Microeconomics

Different Business Models

Non Integration

Every segment: Breeders, Hatchery, Feed, Broilers and Processing owned independently

- Performance usually good: Competitiveness
- OK if choice of supply is at a reasonable distance (NL)
- Complexity and loss of value in the supply chain (i.e. High yield birds wanted by processors but not liked by farmers)

Vertical Integration / Contracts

All segments under one management/ownership

- Clear planning and direction Market ownership
- Easier to capture value, margin control
- Economies of scale and optimization of capital resources
- Risk of complacency/ lower motivation and performance

Microeconomics Performance vs. Efficiency vs. Cost

ADG – Average Daily Gain Total Eggs Produced/ HH

Efficiency Indicators: Measure use of resources required to maximise production. Efficient = No additional output can be obtained without increasing inputs. FCR – Feed required to produce 1kg of weight

Hatchability: Eggs required to produce one chick

Cost Indicators: Value of Money used in the process Feed Cost/kg live – Includes Performance, FCR and Diet Cost Chick Cost – includes Total Eggs, Hatchability and Feed Costs

Microeconomics Key Costs for the Poultry Company

- Hatching Egg Cost
- Hatchery Cost
- Broiler Chick Cost
- Total Broiler Live Cost/ kg
- Processing Costs/ kg
- Processed Meat Cost/ kg

Microeconomics Key Costs – Hatching Egg Cost

Factor	Cost /H. Egg	%
Adult Breeder Feed	€ 0.0771	37.9
Pullet Amortization w. Feed (w/o chick)	€ 0.0499	24.5
Labour + Supervision + Services	€ 0.0360	17.7
Day Old Breeder Chick (Package)	€ 0.0210	10.3
Utilities + Maintenance	€ 0.0101	4.9
Medication and Vaccine	€ 0.0005	0.2
Miscellaneous	€ 0.0090	4.4
Total	€0.2035	

Microeconomics Key Costs – Broiler Chick Cost

Factor	Cost per Chick	%
Egg Cost	€ 0.2035	71.1
Hatchery Costs	€ 0.0389	13.6
Transportation (Eggs and Chicks)	€ 0.0286	10.0
Chick Service	€ 0.0142	5.0
Miscellaneous	€ 0.0012	0.4
Total	€0.2864	

Microeconomics Key Costs – Broiler Live Cost

Factor	Cost/kg Live	%
Feed	€ 0.5874	66.8
Chick	€ 0.1432	16.3
Farm Rental and Maintenance	€ 0.0810	9.2
Catching and Transport	€ 0.0327	3.7
Utilities	€ 0.0286	3.3
Medication and Vaccine	€ 0.0061	0.7
Miscellaneous	€ 0.0015	0.2
Total	€0.8791	

Microeconomics Key Costs – Broiler Live Cost

Source: van Horne, LEI report 2009-004 (AVEC 2010 annual report)

Brazil and US are 60% cheaper than Europe

Microeconomics Key Costs – Integration

Factor	Cost/ Kg Processed	%
Broiler Live Cost	€ 1.204	79.9
Whole Bird Processed Costs (incl. Transport)	€ 0.225	
Cut Up Processing Costs	€ 0.375	
<i>Total (50% Cut up + 50% Further Processing)</i>	€1.507	

Microeconomics Key Drivers of Chick Cost

Factor	Key Drivers
Chick Cost (€)	Egg Production - Pullet Body Condition Uniformity - Light Stimulation - Feeding for production - Controlling Female Mortality Hatchability/ Hatchery Costs - Male Management, - Egg Age, Stocking Density, Hatchery Temp., Egg Quality Feed Consumed/ Chick Egg Production, Peak Feed, Feed Reduction post peak

The efficiency of Breeder production Key Efficiency Indicators

Numbers 60 weeks	to	Total Eggs	HE 9 (*	/TE % 1)	Hatching Eggs/ HH	Hatch % (2)	Chi	cks	Hatchery Co per chick (cents) (3)	osts (€
Breed R		169.2	95	5.0	160.7	79.7	12	8.1	3.80	
Cobb 500		161.3	96	6.7	153.0	84.2	12	8.8	3.67	
	Nur 60 v	mbers to weeks		Co f (0-6	Feed nsumed/ emale 50 wk) Kg	Feed Consum Chick (g)	ed/ (4)	C	Chick Cost (€ cents) (5)	
	Bre	ed R			56.0	437			29.1	
	Col	bb 500			54.5	423			28.0	

Microeconomics Key Drivers of Broiler Live Cost/kg

Factor	Key Drivers
Live Cost/ Kg (€)	Feed Cost/kg -Diet Cost - FCR and Mortality Control: Diet, Brooding, Environment control, Vaccination, Disease Control

Numbers to 38 days	Weight (g)	FCR	EPEF	Cost of Feed (€/Ton)	Cost/ Kg Live (€ cents) (1)
Broiler A	2180	1.77	307	330	85.9
Cobb 500	2140	1.78	299	324	85.4

500,000 broilers wk x 52 wks x 2.0kg x €0.005 = €279,500 saved /year

Microeconomics Key Drivers of Cost/Kg Meat

Factor	Key Drivers
Cost/ Kg Meat (€)	Live Cost/kg Processing Yields Diet Control of Farm Rejects - Mortality - Catching procedures and equipment Weight loss during transport Control of Plant Rejects/ Meat Quality - Killing - Stunning - Plucking

In North America and South America the Cobb breed is number one (over 70% of Market share) because of the economics of yield

Microeconomics

Understanding KPI trade off's

Parameter	Value		Value
1 Total egg	1	1% Broiler Mortality	3.0
1 Day Less Broiler (ADG)	1.1	1% CV Uniformity	3.0
1 Chick	1.3	€1 Less per Ton of Feed	4.2
1% Female Mortality	1.6	1 Point FCR	4.5
1% Hatching/ Total Egg	1.8	1% Carcass Yield	10.0
1 Kg Less Female Feed	2.0	1% Breast Meat Yield	37.0
1% Hatch	3.0		

Regardless of pure economics, there are "acceptable" minimum PI levels. © 2015 Cobb Europe - Confidential & Proprietary

Economic Model Summary - Cobb500

For a company producing **1,000,000 broilers/week**

Business	CobbComp.Costs (€ cents)		Main Reasons for difference	Margin / Cost Saving to Cobb 500 per year
Broiler Hatching Eggs	0.224	0.221	8 Hatching Eggs less, but better hatch makes them more saleable	
Broiler Chick Costs	0.271 0.280		3% Better hatch, >1.8kg less feed per female	
Broiler Live Costs (per Kg)	0.867	0.867	Cheaper Feed Costs/kg	
Processing Costs/ Margin (per Kg)	1.547	1.551	1% More yield, better uniformity	
	•		Cost Saving	€ 538,476
Full Integration			Margin if Extra Meat is sold	€ 2,156,891
			Average Additional margin	€ 1,347,683

Microeconomics Value is only real if...

• It can be measured/ captured

–Example: 50% of the broilers in Spain are sold WHOLE with 2.7kg to the Supermarket. Cut up by Supermarket's who cannot measure 0.5% more breast meat yield

• Somebody is willing to pay for it

-Example: In Turkey 1% breast meat yield has half the value than in the UK, because people prefer dark meat

Putting it all together

Key's for a Successful Poultry Company

Tyson an 45 billion/annum food company

Nan-Dirk Mulder – Rabobank

 $\ensuremath{\mathbb{C}}$ 2015 Cobb Europe - Confidential & Proprietary

Thank You

